Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Experimental & Molecular Medicine ; : e17-2013.
Article in English | WPRIM | ID: wpr-147325

ABSTRACT

The anti-melanogenesis effect of glyceollins was examined by melanin synthesis, tyrosinase activity assay in zebrafish embryos and in B16F10 melanoma cells. When developing zebrafish embryos were treated with glyceollins, pigmentation of the embryos, melanin synthesis and tyrosinase activity were all decreased compared with control zebrafish embryos. In situ expression of a pigment cell-specific gene, Sox10, was dramatically decreased by glyceollin treatment in the neural tubes of the trunk region of the embryos. Stem cell factor (SCF)/c-kit signaling pathways as well as expression of microphthalmia-associated transcription factor (MITF) were determined by western blot analysis. Glyceollins inhibited melanin synthesis, as well as the expression and activity of tyrosinase induced by SCF, in a dose-dependent manner in B16F10 melanoma cells. Pretreatment of B16F10 cells with glyceollins dose-dependently inhibited SCF-induced c-kit and Akt phosphorylation. Glyceollins significantly impaired the expression and activity of MITF. An additional inhibitory function of glyceollins was to effectively downregulate intracellular cyclic AMP levels stimulated by SCF in B16F10 cells. Glyceollins have a depigmentation/whitening activity in vitro and in vivo, and that this effect may be due to the inhibition of SCF-induced c-kit and tyrosinase activity through the blockade of downstream signaling pathway.


Subject(s)
Animals , Mice , Embryo, Nonmammalian/drug effects , Melanins/biosynthesis , Melanoma, Experimental/metabolism , Monophenol Monooxygenase/metabolism , Phosphorylation/drug effects , Pigmentation/drug effects , Proto-Oncogene Proteins c-kit/metabolism , Pterocarpans/chemistry , SOXE Transcription Factors/metabolism , Sesquiterpenes/chemistry , Signal Transduction/drug effects , Soybeans/chemistry , Stem Cell Factor/pharmacology , Zebrafish/embryology
3.
Braz. j. med. biol. res ; 38(12): 1775-1789, Dec. 2005.
Article in English | LILACS | ID: lil-417200

ABSTRACT

Identification and enumeration of human hematopoietic stem cells remain problematic, since in vitro and in vivo stem cell assays have different outcomes. We determined if the altered expression of adhesion molecules during stem cell expansion could be a reason for the discrepancy. CD34+CD38- and CD34+CD38+ cells from umbilical cord blood were analyzed before and after culture with thrombopoietin (TPO), FLT-3 ligand (FL) and kit ligand (KL; or stem cell factor) in different combinations: TPO + FL + KL, TPO + FL and TPO, at concentrations of 50 ng/mL each. Cells were immunophenotyped by four-color fluorescence using antibodies against CD11c, CD31, CD49e, CD61, CD62L, CD117, and HLA-DR. Low-density cord blood contained 1.4 ± 0.9 percent CD34+ cells, 2.6 ± 2.1 percent of which were CD38-negative. CD34+ cells were isolated using immuno-magnetic beads and cultured for up to 7 days. The TPO + FL + KL combination presented the best condition for maintenance of stem cells. The total cell number increased 4.3 ± 1.8-fold, but the number of viable CD34+ cells decreased by 46 ± 25 percent. On the other hand, the fraction of CD34+CD38- cells became 52.0 ± 29 percent of all CD34+ cells. The absolute number of CD34+CD38- cells was expanded on average 15 ± 12-fold when CD34+ cells were cultured with TPO + FL + KL for 7 days. The expression of CD62L, HLA-DR and CD117 was modulated after culture, particularly with TPO + FL + KL, explaining differences between the adhesion and engraftment of primary and cultured candidate stem cells. We conclude that culture of CD34+ cells with TPO + FL + KL results in a significant increase in the number of candidate stem cells with the CD34+CD38- phenotype.


Subject(s)
Humans , Infant, Newborn , /analysis , /analysis , Hematopoietic Stem Cells/cytology , Immunophenotyping/methods , Fetal Blood/cytology , /drug effects , /drug effects , HLA-DR Antigens/analysis , Cell Count , Cells, Cultured , Hematopoietic Stem Cells/immunology , Flow Cytometry , Stem Cell Factor/pharmacology , Membrane Proteins/pharmacology , Growth Substances/pharmacology , Thrombopoietin/pharmacology
4.
Experimental & Molecular Medicine ; : 222-226, 2003.
Article in English | WPRIM | ID: wpr-10308

ABSTRACT

Stem cell factor (SCF) is an early-acting cytokine inducing proliferative synergy with other cytokines in hematopoietic cells. We earlier showed that p21 was synergistically induced in SCF synergy and the p44/42 MAPK pathway was essential for the transcriptional control of p21. SCF synergy accompanies protein synthesis. p70S6K implicated in translational control in many other systems has not been shown in SCF synergy induced system. GM-CSF dependent human cell line MO7e was stimulated with GM-CSF with SCF, and investigated activation of p70S6K by using phospho-specific antibody. A possible contribution of p70S6K to SCF synergy was examined by measuring p21 induction as a model system. p70S6K was slightly activated by GM-CSF alone and markedly activated by SCF alone. Combined stimulation with these two cytokines synergistically activated p70S6K resulting in persistent activation. Addition of the pathway- specific inhibitors for PI3K or FRAP/TOR, two upstream pathways of p70S6K resulted in abolishment of p70S6K phosphorylation and also significant reduction of p21 protein level. These data suggest that synergistically activated p70S6K by GM-CSF plus SCF involves, at least in part, protein translational control including regulation of p21 protein.


Subject(s)
Humans , Phosphatidylinositol 3-Kinase/metabolism , Drug Synergism , Enzyme Activation , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cells/enzymology , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Stem Cell Factor/pharmacology , Tacrolimus Binding Protein 1A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL